On generalization of refinement of Jensen’s inequality using Fink’s identity and Abel-Gontscharoff Green function
نویسندگان
چکیده
In this paper, we formulate new Abel-Gontscharoff type identities involving new Green functions for the 'two-point right focal' problem. We use Fink's identity and a new Abel-Gontscharoff-type Green's function for a 'two-point right focal' to generalize the refinement of Jensen's inequality given in (Horváth and Pečarić in Math. Inequal. Appl. 14: 777-791, 2011) from convex function to higher order convex function. Also we formulate the monotonicity of the linear functional obtained from these identities using the recent theory of inequalities for n-convex function at a point. Further we give the bounds for the identities related to the generalization of the refinement of Jensen's inequality using inequalities for the Cebyšev functional. Some results relating to the Grüss and Ostrowski-type inequalities are constructed.
منابع مشابه
Generalization of cyclic refinements of Jensen’s inequality by Fink’s identity
We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüssand Ostrowski-type bounds are found for identities associ...
متن کاملSharpening and Generalizations of Shafer-fink’s Double Inequality for the Arc Sine Function
In this paper, we sharpen and generalize Shafer-Fink’s double inequality for the arc sine function.
متن کاملA Refinement of Jensen’s Inequality for a Class of Increasing and Concave Functions
Suppose that f x is strictly increasing, strictly concave, and twice continuously differentiable on a nonempty interval I ⊆ R, and f ′ x is strictly convex on I. Suppose that xk ∈ a, b ⊆ I, where 0 < a < b, and pk ≥ 0 for k 1, · · · , n, and suppose that ∑n k 1pk 1. Let x ∑n k 1pkxk, and σ 2 ∑n k 1pk xk − x . We show ∑n k 1pkf xk ≤ f x−θ1σ 2 , ∑n k 1pkf xk ≥ f x−θ 2σ 2 , for suitably chosen θ1 ...
متن کاملA REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS FOR f-DIVERGENCE MEASURES
A refinement of the discrete Jensen’s inequality for convex functions defined on a convex subset in linear spaces is given. Application for f -divergence measures including the Kullback-Leibler and Jeffreys divergences are provided as well.
متن کاملOn Vector-valued Hardy Martingales and a Generalized Jensen’s Inequality
We establish a generalized Jensen’s inequality for analytic vector-valued functions on TN using a monotonicity property of vector-valued Hardy martingales. We then discuss how this result extends to functions on a compact abelian group G, which are analytic with respect to an order on the dual group. We also give a generalization of Helson and Lowdenslager’s version of Jensen’s inequality to ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017